The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 4X 1 1 1 3X 1 1 1 1 0 1 1 1 3X 1 1 1 1 1 1 1 1 1 X 0 1 1 1 X 1 1 1 1 1 2X 1 X 1 1 1 4X 1 3X 1 1 1 1 1 1 1 1 1 0 1 1 1 1 2X 1 1 3X 2X 0 1 1 1 1 1 1 1 X 1 1 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4 2 2X+4 X+3 3 1 X+4 4X+2 1 X+3 4X+3 0 1 4 2 2X+2 1 1 3X+4 2X+4 4X+1 1 4X+4 2X+3 3X+2 2X+3 4X+3 2X+2 2 2X+2 2X 1 1 3X+3 1 3X 1 2X+3 4 3X+2 2X+1 3X+1 1 X+4 4X 2 X X+1 1 4X+2 1 3X+3 0 4X+3 2X+3 4X+3 1 3X+1 4X 3X+2 X 3X+1 0 2X+1 X 1 X 2X+4 4X 1 1 3X X+1 3X+2 3X X+4 3 4X+2 1 4X+2 X+3 0 X+1 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X X+2 2X+2 3X X+1 4X+3 2 1 0 1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4 3X 3X+1 3 2X+1 3X+4 2X 4X+1 4X+4 X 4X+4 3X 3X+3 1 3X+2 4X+2 X+3 2X+2 3X+2 3X+3 4 3 4X+2 4X+2 X+4 2X+1 X+1 3 1 2X+4 2X 3X 3X+3 2X+4 X 3 2 X+1 4 2X+1 1 2X+3 4X+3 X+1 1 4X+3 2X+2 4X+2 4X+4 X 4X 0 1 2X 3X+1 0 1 3X 3X+2 4 2X+3 4X 3 2 3X+1 4 3X+3 generates a code of length 95 over Z5[X]/(X^2) who´s minimum homogenous weight is 370. Homogenous weight enumerator: w(x)=1x^0+2960x^370+4304x^375+3160x^380+2160x^385+1460x^390+1100x^395+480x^400 The gray image is a linear code over GF(5) with n=475, k=6 and d=370. This code was found by Heurico 1.16 in 124 seconds.